• 1.

    Bremer J. Carnitine–metabolism and capabilities. Physiol Rev. 1983;63(4):1420–80. https://doi.org/10.1152/physrev.1983.63.4.1420.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Arenas J, Huertas R, Campos Y, Diaz AE, Villalon JM, Vilas E. Results of L-carnitine on the pyruvate dehydrogenase advanced and carnitine palmitoyl transferase actions in muscle of endurance athletes. FEBS Lett. 1994;341(1):91–3. https://doi.org/10.1016/0014-5793(94)80246-7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Ringseis R, Keller J, Eder Ok. Mechanisms underlying the anti-wasting impact of L-carnitine supplementation underneath pathologic circumstances: proof from experimental and scientific research. Eur J Nutr. 2013;52(5):1421–42. https://doi.org/10.1007/s00394-013-0511-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Brass EP. Supplemental carnitine and train. Am J Clin Nutr. 2000;72(2 Suppl):618S–23S. https://doi.org/10.1093/ajcn/72.2.618S.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu Ok, Macdonald IA, Greenhaff PL. Persistent oral ingestion of L-carnitine and carbohydrate will increase muscle carnitine content material and alters muscle gas metabolism throughout train in people. J Physiol. 2011;589(Pt 4):963–73. https://doi.org/10.1113/jphysiol.2010.201343.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Stephens FB, Wall BT, Marimuthu Ok, Shannon CE, Constantin-Teodosiu D, Macdonald IA, Greenhaff PL. Skeletal muscle carnitine loading will increase vitality expenditure, modulates gas metabolism gene networks and prevents physique fats accumulation in people. J Physiol. 2013;591(18):4655–66. https://doi.org/10.1113/jphysiol.2013.255364.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Shannon CE, Ghasemi R, Greenhaff PL, Stephens FB. Rising skeletal muscle carnitine availability doesn’t alter the variations to high-intensity interval coaching. Scand J Med Sci Sports activities. 2018;28(1):107–15. https://doi.org/10.1111/sms.12885.

    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in pink meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. https://doi.org/10.1038/nm.3145.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Baltazar-Martins G, Brito de Souza D, Aguilar-Navarro M, Munoz-Guerra J, MDM P, Del Coso J. Prevalence and patterns of dietary complement use in elite Spanish athletes. J Int Soc Sports activities Nutr. 2019;16(1):30. https://doi.org/10.1186/s12970-019-0296-5.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Wardenaar FC, Ceelen IJ, Van Dijk JW, Hangelbroek RW, Van Roy L, Van der Pouw B, De Vries JH, Mensink M, Witkamp RF. Dietary complement use by Dutch elite and sub-elite athletes: does receiving dietary counseling make a distinction? Int J Sport Nutr Exerc Metab. 2017;27(1):32–42. https://doi.org/10.1123/ijsnem.2016-0157.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Wachter S, Vogt M, Kreis R, Boesch C, Bigler P, Hoppeler H, Krahenbuhl S. Lengthy-term administration of L-carnitine to people: impact on skeletal muscle carnitine content material and bodily efficiency. Clin Chim Acta. 2002;318(1–2):51–61. https://doi.org/10.1016/s0009-8981(01)00804-x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Novakova Ok, Kummer O, Bouitbir J, Stoffel SD, Hoerler-Koerner U, Bodmer M, Roberts P, Urwyler A, Ehrsam R, Krahenbuhl S. Impact of L-carnitine supplementation on the physique carnitine pool, skeletal muscle vitality metabolism and bodily efficiency in male vegetarians. Eur J Nutr. 2016;55(1):207–17. https://doi.org/10.1007/s00394-015-0838-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Lohninger A, Sendic A, Litzlbauer E, Hofbauer R, Staniek H, Blesky D, Schwieglhofer C, Eder M, Bergmuller H, Mascher D, et al. Endurance train coaching and L-carnitine supplementation stimulates gene expression within the blood and muscle cells in younger athletes and center aged topics. Monatshefte Fur Chemie. 2005;136(8):1425–42. https://doi.org/10.1007/s00706-005-0335-6.

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Malaguarnera M, Cammalleri L, Gargante MP, Vacante M, Colonna V, Motta M. L-Carnitine remedy reduces severity of bodily and psychological fatigue and will increase cognitive capabilities in centenarians: a randomized and managed scientific trial. Am J Clin Nutr. 2007;86(6):1738–44. https://doi.org/10.1093/ajcn/86.5.1738.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Sawicka AK, Hartmane D, Lipinska P, Wojtowicz E, Lysiak-Szydlowska W, Olek RA. l-Carnitine Supplementation in Older Ladies. A Pilot Examine on Getting old Skeletal Muscle Mass and Perform. Vitamins. 2018;10(2). https://doi.org/10.3390/nu10020255.

  • 16.

    Samulak JJ, Sawicka AK, Hartmane D, Grinberga S, Pugovics O, Lysiak-Szydlowska W, Olek RA. L-Carnitine supplementation will increase Trimethylamine-N-oxide however not markers of atherosclerosis in wholesome aged ladies. Ann Nutr Metab. 2019;74(1):11–7. https://doi.org/10.1159/000495037.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Olek RA, Samulak JJ, Sawicka AK, Hartmane D, Grinberga S, Pugovics O, Lysiak-Szydlowska W. Elevated Trimethylamine N-oxide is just not related to oxidative stress markers in wholesome aged ladies. Oxidative Med Cell Longev. 2019;2019:6247169. https://doi.org/10.1155/2019/6247169.

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Bordoni L, Sawicka AK, Szarmach A, Winklewski PJ, Olek RA, Gabbianelli R. A pilot research on the consequences of l-Carnitine and Trimethylamine-N-oxide on platelet mitochondrial DNA methylation and CVD biomarkers in aged ladies. Int J Mol Sci. 2020;21(3):1047.

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Grunewald KK, Bailey RS. Commercially marketed dietary supplements for bodybuilding athletes. Sports activities Med. 1993;15(2):90–103. https://doi.org/10.2165/00007256-199315020-00003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Hawley JA, Brouns F, Jeukendrup A. Methods to reinforce fats utilisation throughout train. Sports activities Med. 1998;25(4):241–57. https://doi.org/10.2165/00007256-199825040-00003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Barnett C, Costill DL, Vukovich MD, Cole KJ, Goodpaster BH, Trappe SW, Fink WJ. Impact of L-carnitine supplementation on muscle and blood carnitine content material and lactate accumulation throughout high-intensity dash biking. Int J Sport Nutr. 1994;4(3):280–8. https://doi.org/10.1123/ijsn.4.3.280.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Vukovich MD, Costill DL, Fink WJ. Carnitine supplementation: impact on muscle carnitine and glycogen content material throughout train. Med Sci Sports activities Exerc. 1994;26(9):1122–9.

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Rebouche CJ. Carnitine motion throughout muscle cell membranes. Research in remoted rat muscle. Biochim Biophys Acta. 1977;471(1):145–55. https://doi.org/10.1016/0005-2736(77)90402-3.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL. Insulin stimulates L-carnitine accumulation in human skeletal muscle. FASEB J. 2006;20(2):377–9. https://doi.org/10.1096/fj.05-4985fje.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL. An acute improve in skeletal muscle carnitine content material alters gas metabolism in resting human skeletal muscle. J Clin Endocrinol Metab. 2006;91(12):5013–8. https://doi.org/10.1210/jc.2006-1584.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Stephens FB, Evans CE, Constantin-Teodosiu D, Greenhaff PL. Carbohydrate ingestion augments L-carnitine retention in people. J Appl Physiol (1985). 2007;102(3):1065–70. https://doi.org/10.1152/japplphysiol.01011.2006.

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Attaix D, Ventadour S, Codran A, Bechet D, Taillandier D, Combaret L. The ubiquitin-proteasome system and skeletal muscle losing. Essays Biochem. 2005;41:173–86. https://doi.org/10.1042/EB0410173.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 28.

    Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle development and atrophy. FEBS J. 2013;280(17):4294–314. https://doi.org/10.1111/febs.12253.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Sanchez AM, Candau RB, Bernardi H. FoxO transcription components: their roles within the upkeep of skeletal muscle homeostasis. Cell Mol Life Sci. 2014;71(9):1657–71. https://doi.org/10.1007/s00018-013-1513-z.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Keller J, Ringseis R, Priebe S, Guthke R, Kluge H, Eder Ok. Dietary L-carnitine alters gene expression in skeletal muscle of piglets. Mol Nutr Meals Res. 2011;55(3):419–29. https://doi.org/10.1002/mnfr.201000293.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Keller J, Ringseis R, Koc A, Lukas I, Kluge H, Eder Ok. Supplementation with l-carnitine downregulates genes of the ubiquitin proteasome system within the skeletal muscle and liver of piglets. Animal. 2012;6(1):70–8. https://doi.org/10.1017/S1751731111001327.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Busquets S, Serpe R, Toledo M, Betancourt A, Marmonti E, Orpi M, Pin F, Capdevila E, Madeddu C, Lopez-Soriano FJ, et al. L-Carnitine: an enough complement for a multi-targeted anti-wasting remedy in most cancers. Clin Nutr. 2012;31(6):889–95. https://doi.org/10.1016/j.clnu.2012.03.005.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Keller J, Couturier A, Haferkamp M, Most E, Eder Ok. Supplementation of carnitine results in an activation of the IGF-1/PI3K/Akt signalling pathway and down regulates the E3 ligase MuRF1 in skeletal muscle of rats. Nutr Metab (Lond). 2013;10(1):28. https://doi.org/10.1186/1743-7075-10-28.

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Keller J, Ringseis R, Eder Ok. Supplemental carnitine impacts the microRNA expression profile in skeletal muscle of overweight Zucker rats. BMC Genomics. 2014;15:512. https://doi.org/10.1186/1471-2164-15-512.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Jang J, Park J, Chang H, Lim Ok. L-Carnitine complement reduces skeletal muscle atrophy induced by extended hindlimb suspension in rats. Appl Physiol Nutr Metab. 2016;41(12):1240–7. https://doi.org/10.1139/apnm-2016-0094.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Di Marzio L, Moretti S, D’Alo S, Zazzeroni F, Marcellini S, Smacchia C, Alesse E, Cifone MG, De Simone C. Acetyl-L-carnitine administration will increase insulin-like development issue 1 ranges in asymptomatic HIV-1-infected topics: correlation with its suppressive impact on lymphocyte apoptosis and ceramide era. Clin Immunol. 1999;92(1):103–10. https://doi.org/10.1006/clim.1999.4727.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Kraemer WJ, Volek JS, French DN, Rubin MR, Sharman MJ, Gomez AL, Ratamess NA, Newton RU, Jemiolo B, Craig BW, et al. The results of L-carnitine L-tartrate supplementation on hormonal responses to resistance train and restoration. J Power Cond Res. 2003;17(3):455–62. https://doi.org/10.1519/1533-4287(2003)017<0455:teolls>2.0.co;2.

    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Rondanelli M, Solerte SB, Fioravanti M, Scevola D, Locatelli M, Minoli L, Ferrari E. Circadian secretory sample of development hormone, insulin-like development issue kind I, cortisol, adrenocorticotropic hormone, thyroid-stimulating hormone, and prolactin throughout HIV an infection. AIDS Res Hum Retrovir. 1997;13(14):1243–9. https://doi.org/10.1089/aid.1997.13.1243.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Evans M, Guthrie N, Pezzullo J, Sanli T, Fielding RA, Bellamine A. Efficacy of a novel formulation of L-Carnitine, creatine, and leucine on lean physique mass and purposeful muscle power in wholesome older adults: a randomized, double-blind placebo-controlled research. Nutr Metab (Lond). 2017;14:7. https://doi.org/10.1186/s12986-016-0158-y.

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Askarpour M, Hadi A, Miraghajani M, Symonds ME, Sheikhi A, Ghaedi E. Helpful results of l-carnitine supplementation for weight administration in chubby and overweight adults: an up to date systematic evaluate and dose-response meta-analysis of randomized managed trials. Pharmacol Res. 2020;151:104554. https://doi.org/10.1016/j.phrs.2019.104554.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Lee JK, Lee JS, Park H, Cha YS, Yoon CS, Kim CK. Impact of L-carnitine supplementation and cardio coaching on FABPc content material and beta-HAD exercise in human skeletal muscle. Eur J Appl Physiol. 2007;99(2):193–9. https://doi.org/10.1007/s00421-006-0333-3.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Rafraf M, Karimi M, Jafari A. Impact of L-carnitine supplementation compared with reasonable cardio coaching on serum inflammatory parameters in wholesome overweight ladies. J Sports activities Med Phys Health. 2015;55(11):1363–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Koozehchian MS, Daneshfar A, Fallah E, Agha-Alinejad H, Samadi M, Kaviani M, Kaveh BM, Jung YP, Sablouei MH, Moradi N, et al. Results of 9 weeks L-Carnitine supplementation on train efficiency, anaerobic energy, and exercise-induced oxidative stress in resistance-trained males. J Exerc Vitamin Biochem. 2018;22(4):7–19. https://doi.org/10.20463/jenb.2018.0026.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Ahlborg G, Jensen-Urstad M. Metabolism in exercising arm vs. leg muscle. Clin Physiol. 1991;11(5):459–68. https://doi.org/10.1111/j.1475-097x.1991.tb00818.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Doherty TJ. Invited evaluate: Getting old and sarcopenia. J Appl Physiol (1985). 2003;95(4):1717–27. https://doi.org/10.1152/japplphysiol.00347.2003.

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Volpato S, Bianchi L, Cherubini A, Landi F, Maggio M, Savino E, Bandinelli S, Ceda GP, Guralnik JM, Zuliani G, et al. Prevalence and scientific correlates of sarcopenia in community-dwelling older individuals: software of the EWGSOP definition and diagnostic algorithm. J Gerontol A Biol Sci Med Sci. 2014;69(4):438–46. https://doi.org/10.1093/gerona/glt149.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Peake J, Suzuki Ok. Neutrophil activation, antioxidant dietary supplements and exercise-induced oxidative stress. Exerc Immunol Rev. 2004;10:129–41.

    PubMed 

    Google Scholar
     

  • 48.

    Peake J, Nosaka Ok, Suzuki Ok. Characterization of inflammatory responses to eccentric train in people. Exerc Immunol Rev. 2005;11:64–85.

    PubMed 

    Google Scholar
     

  • 49.

    Fritz IB, Arrigoni-Martelli E. Websites of motion of carnitine and its derivatives on the cardiovascular system: interactions with membranes. Developments Pharmacol Sci. 1993;14(10):355–60. https://doi.org/10.1016/0165-6147(93)90093-y.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Giamberardino MA, Dragani L, Valente R, Di Lisa F, Saggini R, Vecchiet L. Results of extended L-carnitine administration on delayed muscle ache and CK launch after eccentric effort. Int J Sports activities Med. 1996;17(5):320–4. https://doi.org/10.1055/s-2007-972854.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Volek JS, Kraemer WJ, Rubin MR, Gomez AL, Ratamess NA, Gaynor P. L-Carnitine L-tartrate supplementation favorably impacts markers of restoration from train stress. Am J Physiol Endocrinol Metab. 2002;282(2):E474–82. https://doi.org/10.1152/ajpendo.00277.2001.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Spiering BA, Kraemer WJ, Vingren JL, Hatfield DL, Fragala MS, Ho JY, Maresh CM, Anderson JM, Volek JS. Responses of criterion variables to totally different supplemental doses of L-carnitine L-tartrate. J Power Cond Res. 2007;21(1):259–64. https://doi.org/10.1519/00124278-200702000-00046.

    Article 
    PubMed 

    Google Scholar
     

  • 53.

    Ho JY, Kraemer WJ, Volek JS, Fragala MS, Thomas GA, Dunn-Lewis C, Coday M, Hakkinen Ok, Maresh CM. L-Carnitine l-tartrate supplementation favorably impacts biochemical markers of restoration from bodily exertion in middle-aged women and men. Metabolism. 2010;59(8):1190–9. https://doi.org/10.1016/j.metabol.2009.11.012.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 54.

    Spiering BA, Kraemer WJ, Hatfield DL, Vingren JL, Fragala MS, Ho JY, Thomas GA, Hakkinen Ok, Volek JS. Results of L-carnitine L-tartrate supplementation on muscle oxygenation responses to resistance train. J Power Cond Res. 2008;22(4):1130–5. https://doi.org/10.1519/JSC.0b013e31817d48d9.

    Article 
    PubMed 

    Google Scholar
     

  • 55.

    Rebouche CJ, Mack DL, Edmonson PF. L-Carnitine dissimilation within the gastrointestinal tract of the rat. Biochemistry. 1984;23(26):6422–6.

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Rebouche CJ. Quantitative estimation of absorption and degradation of a carnitine complement by human adults. Metabolism. 1991;40(12):1305–10.

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Rebouche CJ, Chenard CA. Metabolic destiny of dietary carnitine in human adults: identification and quantification of urinary and fecal metabolites. J Nutr. 1991;121(4):539–46. https://doi.org/10.1093/jn/121.4.539.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 58.

    Fukami Ok, Yamagishi S, Sakai Ok, Kaida Y, Yokoro M, Ueda S, Wada Y, Takeuchi M, Shimizu M, Yamazaki H, et al. Oral L-carnitine supplementation will increase trimethylamine-N-oxide however reduces markers of vascular harm in hemodialysis sufferers. J Cardiovasc Pharmacol. 2015;65(3):289–95. https://doi.org/10.1097/FJC.0000000000000197.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 59.

    Vallance HD, Koochin A, Branov J, Rosen-Heath A, Bosdet T, Wang Z, Hazen SL, Horvath G. Marked elevation in plasma trimethylamine-N-oxide (TMAO) in sufferers with mitochondrial issues handled with oral l-carnitine. Mol Genet Metab Rep. 2018;15:130–3. https://doi.org/10.1016/j.ymgmr.2018.04.005.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Samulak JJ, Sawicka AK, Samborowska E, Olek RA. Plasma Trimethylamine-N-oxide following Cessation of L-carnitine Supplementation in Wholesome Aged Ladies. Vitamins. 2019;11(6). https://doi.org/10.3390/nu11061322.

  • 61.

    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al. Intestine flora metabolism of phosphatidylcholine promotes heart problems. Nature. 2011;472(7341):57–63. https://doi.org/10.1038/nature09922.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Pan A, Solar Q, Bernstein AM, Schulze MB, Manson JE, Stampfer MJ, Willett WC, Hu FB. Pink meat consumption and mortality: outcomes from 2 potential cohort research. Arch Intern Med. 2012;172(7):555–63. https://doi.org/10.1001/archinternmed.2011.2287.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular danger. N Engl J Med. 2013;368(17):1575–84. https://doi.org/10.1056/NEJMoa1109400.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL. Intestine microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to each growth of renal insufficiency and mortality danger in power kidney illness. Circ Res. 2015;116(3):448–55. https://doi.org/10.1161/CIRCRESAHA.116.305360.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 65.

    Suzuki T, Heaney LM, Bhandari SS, Jones DJ, Ng LL. Trimethylamine N-oxide and prognosis in acute coronary heart failure. Coronary heart. 2016;102(11):841–8. https://doi.org/10.1136/heartjnl-2015-308826.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 66.

    Gruppen EG, Garcia E, Connelly MA, Jeyarajah EJ, Otvos JD, Bakker SJL, Dullaart RPF. TMAO is related to mortality: affect of modestly impaired renal perform. Sci Rep. 2017;7(1):13781. https://doi.org/10.1038/s41598-017-13739-9.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Intestine Microbiota Metabolites and Threat of Main Adversarial Cardiovascular Illness Occasions and Loss of life: A Systematic Overview and Meta-Evaluation of Potential Research. J Am Coronary heart Assoc. 2017;6(7). https://doi.org/10.1161/JAHA.116.004947.

  • 68.

    Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, Trimarco B, Esposito G, Perrino C. Intestine microbe-generated metabolite trimethylamine-N-oxide as cardiovascular danger biomarker: a scientific evaluate and dose-response meta-analysis. Eur Coronary heart J. 2017;38(39):2948–56. https://doi.org/10.1093/eurheartj/ehx342.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 69.

    Rebouche CJ, Engel AG. Kinetic compartmental evaluation of carnitine metabolism within the human carnitine deficiency syndromes. Proof for alterations in tissue carnitine transport. J Clin Make investments. 1984;73(3):857–67. https://doi.org/10.1172/JCI111281.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Wang Z, Bergeron N, Levison BS, Li XS, Chiu S, Jia X, Koeth RA, Li L, Wu Y, Tang WHW, et al. Affect of power dietary pink meat, chicken, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in wholesome women and men. Eur Coronary heart J. 2019;40(7):583–94. https://doi.org/10.1093/eurheartj/ehy799.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 71.

    Rohrmann S, Linseisen J, Allenspach M, von Eckardstein A, Muller D. Plasma concentrations of Trimethylamine-N-oxide are immediately related to dairy meals consumption and low-grade irritation in a German grownup inhabitants. J Nutr. 2016;146(2):283–9. https://doi.org/10.3945/jn.115.220103.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 72.

    Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, Slimani N, Zamora-Ros R, Rundle M, Frost G, et al. A metabolomic research of biomarkers of meat and fish consumption. Am J Clin Nutr. 2017;105(3):600–8. https://doi.org/10.3945/ajcn.116.146639.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 73.

    Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Residing with water stress: evolution of osmolyte techniques. Science. 1982;217(4566):1214–22. https://doi.org/10.1126/science.7112124.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 74.

    Gillett MB, Suko JR, Santoso FO, Yancey PH. Elevated ranges of trimethylamine oxide in muscle groups of deep-sea gadiform teleosts: a high-pressure adaptation? J Exp Zool. 1997;279(4):386–91. https://doi.org/10.1002/(sici)1097-010x(19971101)279:4<386::Aid-jez8>3.0.Co;2-k.

    CAS 
    Article 

    Google Scholar
     

  • 75.

    Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A. Marine fish could also be biochemically constrained from inhabiting the deepest ocean depths. Proc Natl Acad Sci U S A. 2014;111(12):4461–5. https://doi.org/10.1073/pnas.1322003111.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Zhang AQ, Mitchell SC, Smith RL. Dietary precursors of trimethylamine in man: a pilot research. Meals Chem Toxicol. 1999;37(5):515–20.

    CAS 
    Article 

    Google Scholar
     

  • 77.

    Tong TYN, Appleby PN, Bradbury KE, Perez-Cornago A, Travis RC, Clarke R, Key TJ. Dangers of ischaemic coronary heart illness and stroke in meat eaters, fish eaters, and vegetarians over 18 years of follow-up: outcomes from the potential EPIC-Oxford research. BMJ. 2019;366:l4897. https://doi.org/10.1136/bmj.l4897.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Bain MA, Faull R, Fornasini G, Milne RW, Evans AM. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal illness sufferers present process haemodialysis. Nephrol Dial Transplant. 2006;21(5):1300–4. https://doi.org/10.1093/ndt/gfk056.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 79.

    Hauet T, Baumert H, Gibelin H, Godart C, Carretier M, Eugene M. Citrate, acetate and renal medullary osmolyte excretion in urine as predictor of renal adjustments after chilly ischaemia and transplantation. Clin Chem Lab Med. 2000;38(11):1093–8. https://doi.org/10.1515/CCLM.2000.162.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 80.

    Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, Matsushita Ok, Wen CP. Persistent kidney illness and cardiovascular danger: epidemiology, mechanisms, and prevention. Lancet. 2013;382(9889):339–52. https://doi.org/10.1016/S0140-6736(13)60595-4.

    Article 
    PubMed 

    Google Scholar
     

  • 81.

    Damman Ok, Valente MA, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal perform, and consequence in sufferers with coronary heart failure: an up to date meta-analysis. Eur Coronary heart J. 2014;35(7):455–69. https://doi.org/10.1093/eurheartj/eht386.

    Article 
    PubMed 

    Google Scholar
     

  • 82.

    Bielinska Ok, Radkowski M, Grochowska M, Perlejewski Ok, Huc T, Jaworska Ok, Motooka D, Nakamura S, Ufnal M. Excessive salt consumption will increase plasma trimethylamine N-oxide (TMAO) focus and produces intestine dysbiosis in rats. Vitamin. 2018;54:33–9. https://doi.org/10.1016/j.nut.2018.03.004.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 83.

    Jaworska Ok, Huc T, Samborowska E, Dobrowolski L, Bielinska Ok, Gawlak M, Ufnal M. Hypertension in rats is related to an elevated permeability of the colon to TMA, a intestine micro organism metabolite. PLoS One. 2017;12(12):e0189310. https://doi.org/10.1371/journal.pone.0189310.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Xu M, Bhatt DK, Yeung CK, Claw KG, Chaudhry AS, Gaedigk A, Pearce RE, Broeckel U, Gaedigk R, Nickerson DA, et al. Genetic and nongenetic components related to protein abundance of Flavin-containing Monooxygenase 3 in human liver. J Pharmacol Exp Ther. 2017;363(2):265–74. https://doi.org/10.1124/jpet.117.243113.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Ufnal M, Pham Ok. The gut-blood barrier permeability – a brand new marker in cardiovascular and metabolic illnesses? Med Hypotheses. 2017;98:35–7. https://doi.org/10.1016/j.mehy.2016.11.012.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 86.

    Lango R, Smolenski RT, Narkiewicz M, Suchorzewska J, Lysiak-Szydlowska W. Affect of L-carnitine and its derivatives on myocardial metabolism and performance in ischemic coronary heart illness and through cardiopulmonary bypass. Cardiovasc Res. 2001;51(1):21–9. https://doi.org/10.1016/s0008-6363(01)00313-3.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 87.

    Iliceto S, Scrutinio D, Bruzzi P, D’Ambrosio G, Boni L, Di Biase M, Biasco G, Hugenholtz PG, Rizzon P. Results of L-carnitine administration on left ventricular reworking after acute anterior myocardial infarction: the L-Carnitine Ecocardiografia Digitalizzata Infarto Miocardico (CEDIM) trial. J Am Coll Cardiol. 1995;26(2):380–7.

    CAS 
    Article 

    Google Scholar
     

  • 88.

    Hiramatsu A, Aikata H, Uchikawa S, Ohya Ok, Kodama Ok, Nishida Y, Daijo Ok, Osawa M, Teraoka Y, Honda F, et al. Levocarnitine use is related to enchancment in sarcopenia in sufferers with liver cirrhosis. Hepatol Commun. 2019;3(3):348–55. https://doi.org/10.1002/hep4.1309.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Hathcock JN, Shao A. Threat evaluation for carnitine. Regul Toxicol Pharmacol. 2006;46(1):23–8. https://doi.org/10.1016/j.yrtph.2006.06.007.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 90.

    Shang R, Solar Z, Li H. Efficient dosing of L-carnitine within the secondary prevention of heart problems: a scientific evaluate and meta-analysis. BMC Cardiovasc Disord. 2014;14:88. https://doi.org/10.1186/1471-2261-14-88.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Bakalov D, Sabit Z, Tafradjiiska-Hadjiolova R. Re: impact of l-carnitine supplementation on muscle cramps induced by stroke: a case report. Vitamin. 2020;75-76:110771. https://doi.org/10.1016/j.nut.2020.110771.

    Article 
    PubMed 

    Google Scholar
     

  • LEAVE A REPLY

    Please enter your comment!
    Please enter your name here